
1. Static and Quasi-Static Fields 

Abstract — The application of Proper Orthogonal 
Decomposition to the Galerkin Finite Element formulation of 
transient electro-quasistatic (TEQS) fields is presented. This 
approach results in a low order approximation by projection 
methods of the discrete transient electro-quasistatic system of 
ODEs.  First numerical results for constant and nonlinear 
conductive materials are shown for TEQS simulations. 

I. INTRODUCTION 

The designs of high-voltage (HV) devices are getting 
more sophisticated and more and more parameter has to be 
taken into account. Hence parameter studies and 
optimization challenging the development of simulation 
tools in high-voltage engineering. The electro-quasistatic 
(EQS) field assumptions [1], [2] are suitable for most HV 
applications, because HV devices are operated at low 
frequencies. The Galerkin Finite Element Method applied 
to the transient electro-quasistatic (TEQS) field equation 
[2], [3] is able to treat slow-varying fields with capacitive 
and nonlinear resistive effects, as they are important for 
high-voltage technology. This often leads to large scale 
ordinary differential equation (ODE) systems. One method 
to facilitate parameter studies and optimization is to 
approximate the large scale systems by lower order 
approximations. In this work, the proper orthogonal 
decomposition (POD) is applied to the discrete EQS 
system.  The POD method is a commonly used projection 
method for linear and nonlinear systems [4], [5]. 

II. FEM DISCRETIZATION 

A. Transient Electro-Quasistatic Fields 

The transient simulation of HV field problems requires a 
formulation that takes dielectric effects as well as nonlinear 
conductive effects into account. Neglecting inductive 

effects ( 0t B


) in Faraday’s law and using Poincaré’s 

identity ( curl grad 0 ) leads to the EQS equation 
 

 div grad div ( grad )grad 0t        (1.1) 
 

with  grad E


. The permittivity is denoted by   and 

the conductivity  may depend of the electric field strength. 

B. Galerkin Finite Element Discretization 

The spatial discretization of complex models by Galerkin 
Finite Element Method yields into a large nonlinear ODE 
system 

 
d

( ( )) ( ) ( ) ( )
dt

t t t t   C P b , (1.2) 

Where C is the nonlinear conductivity matrix, P  the 
constant  permittivity matrix and b  the right-hand-side 
vector which incorporates Dirichlet boundary conditions. 
Due to the large differences in material parameters the 
system (1.2) is a stiff ODE system. Hence the solution can 
be realized by implicit time integration with the backward 
differtiation (BDF1) Euler method [3] or a Singly-
Diagonal-Implicit-Runge-Kutta (SDIRK) method [2]. 
Therefore in each time step one or several high dimensional 
nonlinear system of equations must be solved. In this work 
only the BDF1 integration is used. 

III. PROPER ORTHOGONAL DECOMPOSITION 

The proper orthogonal decomposition is a method for 
building a low-order approximation of both linear and 
nonlinear dynamical systems. The method is based on the 
formulation of the system behavior by extracting a low 
number of orthogonal vectors by the observation of the 
system dynamics. The number of p  observations of the n  

dimensional system vectors are assembled in a so-called 
snapshot matrix 

 

 1= ( ), , ( )  n p
pt t     X   . (1.3) 

 

The POD approximates the high dimensional 
observations matrix by a lower dimensional matrix which is 
usually built up from a small number of orthogonal column 
vectors. 

A. POD and Singular Value Decomposition 

These orthogonal vectors can be computed by the 
singular value decomposition (SVD). Every matrix X  can 
be decomposed into three matrices by the SVD and it can 
be expanded into a rank-one decomposition 

 

 1 1 1
T T T

r r r    X UΣV u v u v . (1.4) 
 

The columns of U and the rows of V contain the 
orthonormal left and right singular vectors iu and iv . The 

diagonal matrix Σ features the positive singular values i  

ordered from large to small on the diagonal.  The higher 
order terms in the rank-one decomposition become small 
rapidly with increasing index i. A low-order approximation 
of the snapshot matrix can be achieved by dropping out the 
small singular values. 

 

 1 1 1
T T T

k k k k k k k     X X U Σ V u v u v , (1.5) 

with rank( )k r  X . The matrix kU is in n k . This 

matrix can be used as a projector to map from space of 
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dimension k to the  space of the full system with dimension 
n. 

B. POD and TEQS 

Let ( ) ( ),    ( ) k
kt t t  U x x  . Then system (1.2) can be 

reduced to the reduced-order system 
 

 
d

( ( )) ( )  ( )
d

T T T
k k k k kt t t

t
 U C x U x U P U x U b   (1.6) 

The matrices ( ( ))T
k ktU C U and  T

k kU P U are k k  and the 

vector T
kU b  is of dimension k . The implicit time integra-

tion and the solution of the nonlinear equation systems can 
now be performed for the low dimensional system. 

IV. FIRST NUMERICAL RESULTS 

The numerical experiments are performed with a 2d axis-
symmetric TEQS-code implemented in MATLAB. As a 
first numerical benchmark, a surge arrester model 
discretized with 1280 triangles, 719 Nodes (668 Nodes 
without boundary nodes) was excited with a ramped 
sinusoidal signal of 50Hz.      

 
Fig. 1 Ramped sinus for two periods 

For first numerical experiments the snapshot-matrix was 
assembled by 40 time steps of a full simulation. Aiming to 
save computing time, only the elements which contain 
nonlinear materials are (re-)assembled in every time step. 

A. Constant conductivity 

For constant permittivity and constant conductivity the 
singular values become small very fast. As may be assumed 
the dominant mode in the projection matrix is the static 
field solution, i.e., 1u , the first column vector of kU  

represents the electrostatic mode up to a scaling factor. 

TABLE I 
 REDUCED ORDER FOR NONLINEAR MATERIALS  

B. Nonlinear conductivity 

The low speedup factor results from the singular value 
decomposition and the bad conditioned low order equations 
system which has to be solved in the Newton solver.  
 

 
Fig. 2 IEC 60099-4 surge arrester in static mode 

 
The results in Table I show that for both constant and 
nonlinear material behavior the TEQS system dimension 
reduction factor of about two orders of magnitude is achie-
ved. For a speed-up of the CPU time further imple-
mentation and formulation improvements can be expected. 

V. CONCLUSION 

A Proper Orthogonal Decomposition model order reduction 
scheme for transient electro-quasistatic field simulations 
was proposed. The method applies to formulations with 
constant and/or field dependent nonlinear material 
conductivities. Numerical results showed a considerable 
reduction of the system dimensions and a possible speed-up 
of the simulation times. The upcoming full paper will 
feature additional details on the model order reduction 
formulation and additional numerical test results. 
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Surge arrester Constant   Nonlinear   
Dim full order 

system 
668 668 

1  50.45 650 10  

8  101.69 10  31.1 10  

16  > 1510  > 510  

Dim reduced system 8 16 
Reduction factor 83.5 41.8 

Maximal deviation in 
nodal potential 

full
nodes

max reduced 


  
122.5 10 kV 0.3 kV 

full
nodes
max   471 kV 471 kV 

speedup factor 6.2 1,4 


